On manifolds with involution
نویسندگان
چکیده
منابع مشابه
On centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملCalabi-Yau manifolds constructed by K3 fibration with involution
The method to construct the Calabi-Yau manifolds and their mirrors from K3 surfaces was developed by Borcea and Voisin. Using this method, some Calabi-Yau manifolds are constructed. We also investigate their applicability to string duality. [email protected] [email protected]
متن کاملon centralizers of prime rings with involution
let $r$ be a ring with involution $*$. an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$. the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کامل2-local Mappings on Algebras with Involution
We investigate 2-local ∗-automorphisms, 2-local ∗-antiautomorphisms, and 2-local Jordan ∗-derivations on certain algebras with involution.
متن کامل*-orderings on a Ring with Involution
The object of the paper is to extend part of the theory of-orderings on a skewweld with involution to a general ring with involution. The valuation associated to a-ordering is examined. Every-ordering is shown to extend.-orderings are shown to form a space of signs as deened by Brr ocker and Marshall. In case the involution is the identity, the ring under consideration is commutative and the-or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1967
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1967-11683-5